Himpunan terhitung

Dalam matematik, set boleh dikira jika ia mempunyai kardinaliti yang sama ( bilangan unsur set) dengan beberapa subset set nombor asli N = {0, 1, 2, 3, ...}. Setara, set S boleh dikira jika wujud fungsi injektif f : SN dari S ke N ; ia hanya bermaksud bahawa setiap elemen dalam S sepadan dengan elemen yang berbeza dalam N.

RujukanSunting

  • Apostol, Tom M. (June 1969), Multi-Variable Calculus and Linear Algebra with Applications, Calculus, 2 (ed. 2nd), New York: John Wiley + Sons, ISBN 978-0-471-00007-5
  • Avelsgaard, Carol (1990), Foundations for Advanced Mathematics, Scott, Foresman and Company, ISBN 0-673-38152-8
  • Cantor, Georg (1878), "Ein Beitrag zur Mannigfaltigkeitslehre", Journal für die Reine und Angewandte Mathematik, 1878 (84): 242–248, doi:10.1515/crelle-1878-18788413
  • Ferreirós, José (2007), Labyrinth of Thought: A History of Set Theory and Its Role in Mathematical Thought (ed. 2nd revised), Birkhäuser, ISBN 978-3-7643-8349-7
  • Fletcher, Peter; Patty, C. Wayne (1988), Foundations of Higher Mathematics, Boston: PWS-KENT Publishing Company, ISBN 0-87150-164-3
  • Halmos, Paul R. (1960), Naive Set Theory, D. Van Nostrand Company, Inc Reprinted by Springer-Verlag, New York, 1974. ISBN 0-387-90092-6 (Springer-Verlag edition). Reprinted by Martino Fine Books, 2011. ISBN 978-1-61427-131-4 (Paperback edition).
  • Kamke, Erich (1950), Theory of Sets, Dover series in mathematics and physics, New York: Dover, ISBN 978-0486601410
  • Lang, Serge (1993), Real and Functional Analysis, Berlin, New York: Springer-Verlag, ISBN 0-387-94001-4
  • Rudin, Walter (1976), Principles of Mathematical Analysis, New York: McGraw-Hill, ISBN 0-07-054235-X
  • Tao, Terence (2016). "Infinite sets". Analysis I (dalam bahasa Inggeris) (ed. Third). Singapore: Springer. m/s. 181–210. ISBN 978-981-10-1789-6.