Dalam bidang matematik, polinomial ialah ungkapan yang dibina menggunakan beberapa pemboleh ubah dan pemalar dengan operasi-operasi penambahan, penolakan, pendaraban, dan pengeksponenan nombor bulat sahaja. Sebagai contoh, adalah polinomial, sebaliknya bukan polinomial kerana sebutannya yang kedua melibatkan pembahagian terhadap pemboleh ubah dan sebutannya yang ketiga mengandungi eksponen bukan nombor bulat.

Sifat-sifatSunting

  • Hasil tambah polinomial juga polinomial.
  • Hasil darab polinomial juga polinomial.
  • Terbitan fungsi polinomial juga polinomial. Terbitan   ialah  .
  • Antiterbitan fungsi polinomial juga polinomial. Antiterbitan   ialah  .

AritmetikSunting

Hukum sekutuan boleh diguna pakai dalam penambahan dan penolakan dua polinomial, yakni mengumpul dan menggabungkan pekali bagi pemboleh ubah berdarjah sepadan. Hukum agihan pula digunakan dalam pendaraban dua polinomial.

Pembahagian dua polinomial tidak selalunya menerbitkan polinomial dan lazimnya berada di bawah pecahan nisbah,[1] seperti mana pembahagian dua integer tidak semestinya menghasilkan satu integer, tetapi menghasilkan nombor bukan integer di bawah nombor nisbah.[2] Pembahagian polinomial boleh dilaksanakan dengan beberapa kaedah seperti pembahagian panjang dan pembahagian sintetik.[3]

RujukanSunting

BibliografiSunting

  • Mamat, Mustafa; Ibrahim, Zarina (1990). Algebra Asas. Kuala Lumpur: Dewan Bahasa dan Pustaka. halaman 106–126. ISBN 9836211470.

PetikanSunting

  1. ^ Marecek, Lynn; Mathis, Andrea Honeycutt (6 Mei 2020). Intermediate Algebra 2e (dalam bahasa Inggeris). Section 7.1: OpenStax.Selenggaraan CS1: lokasi (link)
  2. ^ Haylock, Derek; Cockburn, Anne D. (2008-10-14). Understanding Mathematics for Young Children: A Guide for Foundation Stage and Lower Primary Teachers (dalam bahasa Inggeris). SAGE. m/s. 49. ISBN 978-1-4462-0497-9. We find that the set of integers is not closed under this operation of division.
  3. ^ Peter H. Selby, Steve Slavin, Practical Algebra: A Self-Teaching Guide, 2nd Edition, Wiley, ISBN 0-471-53012-3 ISBN 978-0-471-53012-1

Pautan luarSunting

  •   Media berkenaan Polinomial di Wikimedia Commons