Tafsiran banyak-dunia

Tafsiran banyak-dunia (MWI) ialah tafsiran mekanik kuantum yang menegaskan bahawa fungsi gelombang universal ialah secara objektif nyata, dan tiada keruntuhan fungsi gelombang.[2] Ini membayangkan bahawa semua kemungkinan hasil pengukuran kuantum direalisasikan secara fizikal di beberapa "dunia" atau alam semesta.[3] Berbeza dengan beberapa tafsiran lain, seperti tafsiran Copenhagen, evolusi realiti secara keseluruhan dalam MWI ialah deterministik tegar[2]:9 dan tempatan.[4] Banyak-dunia juga dipanggil rumusan keadaan relatif atau tafsiran Everett, selepas ahli fizik Hugh Everett, yang pertama kali mencadangkannya pada tahun 1957.[5][6] Bryce DeWitt mempopularkan formulasi itu dan menamakannya many-worlds pada tahun 1970-an.[1][2][7][8]

Paradoks mekanik kuantum "Kucing Schrödinger" mengikut tafsiran banyak-dunia. Dalam tafsiran ini, setiap peristiwa kuantum ialah titik cabang; kucing itu hidup dan mati, walaupun sebelum kotak dibuka, tetapi kucing "hidup" dan "mati" berada dalam cabang pelbagai alam semesta, kedua-duanya adalah sama nyata, tetapi tidak berinteraksi antara satu sama lain.[a]

Catatan

sunting
  1. ^ "setiap peralihan kuantum yang berlaku pada setiap bintang, di setiap galaksi, di setiap sudut terpencil alam semesta membelah dunia tempatan kita di bumi kepada berjuta-juta salinan dirinya sendiri."[1]

Rujukan

sunting
  1. ^ a b Bryce S. DeWitt (1970). "Quantum mechanics and reality". Physics Today. 23 (9): 30–35. Bibcode:1970PhT....23i..30D. doi:10.1063/1.3022331. See also Leslie E. Ballentine; Philip Pearle; Evan Harris Walker; Mendel Sachs; Toyoki Koga; Joseph Gerver; Bryce DeWitt (1971). "Quantum‐mechanics debate". Physics Today. 24 (4): 36–44. Bibcode:1971PhT....24d..36.. doi:10.1063/1.3022676.
  2. ^ a b c Everett, Hugh; Wheeler, J. A.; DeWitt, B. S.; Cooper, L. N.; Van Vechten, D.; Graham, N. (1973). DeWitt, Bryce; Graham, R. Neill (penyunting). The Many-Worlds Interpretation of Quantum Mechanics. Princeton Series in Physics. Princeton, NJ: Princeton University Press. m/s. v. ISBN 0-691-08131-X.
  3. ^ Tegmark, Max (1998). "The Interpretation of Quantum Mechanics: Many Worlds or Many Words?". Fortschritte der Physik. 46 (6–8): 855–862. arXiv:quant-ph/9709032. Bibcode:1998ForPh..46..855T. doi:10.1002/(SICI)1521-3978(199811)46:6/8<855::AID-PROP855>3.0.CO;2-Q.
  4. ^ Harvey R. Brown; Christopher G. Timpson (2016). "Bell on Bell's Theorem: The Changing Face of Nonlocality". Dalam Mary Bell; Shan Gao (penyunting). Quantum Nonlocality and Reality: 50 years of Bell's theorem. Cambridge University Press. m/s. 91–123. arXiv:1501.03521. doi:10.1017/CBO9781316219393.008. ISBN 9781316219393. On locality:"Amongst those who have taken Everett’s approach to quantum theory at all seriously as an option, it is a commonplace that—given an Everettian interpretation—quantum theory is (dynamically) local-there is no action-at-a-distance" on determinism:"But zooming-out (in a God’s-eye view) from a particular branch will be seen all the other branches, each with a different result of measurement being recorded and observed, all coexisting equally; and all underpinned by (supervenient on) the deterministically, unitarily, evolving universal wavefunction"
  5. ^ Hugh Everett Theory of the Universal Wavefunction, Thesis, Princeton University, (1956, 1973), pp 1–140
  6. ^ Everett, Hugh (1957). "Relative State Formulation of Quantum Mechanics". Reviews of Modern Physics. 29 (3): 454–462. Bibcode:1957RvMP...29..454E. doi:10.1103/RevModPhys.29.454. Diarkibkan daripada yang asal pada 2011-10-27. Dicapai pada 2011-10-24.
  7. ^ Cecile M. DeWitt, John A. Wheeler eds, The Everett–Wheeler Interpretation of Quantum Mechanics, Battelle Rencontres: 1967 Lectures in Mathematics and Physics (1968)
  8. ^ Bryce Seligman DeWitt, The Many-Universes Interpretation of Quantum Mechanics, Proceedings of the International School of Physics "Enrico Fermi" Course IL: Foundations of Quantum Mechanics, Academic Press (1972)

Bacaan lanjut

sunting

Pautan luar

sunting