Annuiti ialah satu siri pembayaran yang dibuat pada selang waktu yang sama.[1] Contoh anuiti ialah deposit tetap ke akaun simpanan, bayaran bulanan pinjaman gadai janji, bayaran bulanan insurans dan bayaran pencen. Anuiti boleh dikelaskan mengikut kekerapan tarikh pembayaran. Pembayaran (deposit) boleh dibuat secara mingguan, bulanan, suku tahunan, tahunan, atau pada sebarang selang masa tetap yang lain. Anuiti boleh dikira dengan fungsi matematik yang dikenali sebagai "fungsi anuiti".

Anuiti yang menyediakan bayaran untuk baki seumur hidup seseorang ialah anuiti hayat.

Ordinary Annuity

sunting

Sebuah ordinary annuity (juga dirujukkan sebagai annuity-immediate) adalah sebuah anuiti yang bayarannya dilakukan pada hujung setiap jangka waktu (misalnya sebulan, setahun). Nilai-nilai sebuah ordinary annuity dapat dihitungkan melalui yang berikutnya[2]:

Biar:

  = kadar faedah tahunan.
  = bilangan tahun.
  = bilangan jangka tiap tahun.
  = kadar faedah tiap jangka.
  = bilangan jangka.

Nota:

 
 

Juga biar:

  = prinsipal (atau nilai kini).
  = nilai masa hadapan sebuah anuiti.
  = bayaran berjangka dalam sebuah anuiti (bayaran amortized).


  (Actuarial_notation#Annuities)

Juga:

 

Pada hadnya ketika   bertambahan [perlu rujukan],

 

Oleh itu sebuah siri infinite pada bayaran finite juga dengan sebuah kadar diskaun bukan-kosong mempunyai Nilai Kini.

Bayaran seterusnya dibayar dalam satu jangka. Oleh itu, nilai kini adalah dikira:

 

Kita menyatakan bahawa istilah kedua adalah suatu geometric progression fakta skala   dan of common ratio  . Kita boleh menulis

 

Akhirnya, selepas simplifications, we memperolehi

 

Anuiti Perlu Dibayar

sunting

Suatu anuiti perlu dibayar adalah suatu anuiti yang bayarannya dibuat di permulaan setiap jangka.

Oleh kerana setiap bayaran anuiti dibenarkan untuk compound untuk satu jangka lebih, nilai suatu anuiti perlu dibayar bersamaan dengan nilai ordinary corresponding didarabkan dengan (1+i). Oleh itu, nilai masa hadapan suatu anuiti perlu dibayar dapat dikirakan melalui rumus (variables seperti dinamakan di atas)[3]:

 

Satu lagi cara intuitive untuk menterjemahkan suatu anuiti perlu dibayar adalah jumlah satu bayaran anuiti sekarang (di waktu = 0) dan suatu anuiti ordinary tanpa suatu bayaran anuiti di akhir jangka (contohnya n-1).

Jenis anuiti lain

sunting
  • Anuiti tetap - ini adalah anuiti dengan bayaran tetap. Mereka pada asasnya digunakan untuk pelaburan risiko rendah seperti pengawalan kerajaan atau bond korporat. Anuiti tetap memberikan kadar ke atas sepuluh tahun tetapi bukan Securities and Exchange Commission beregulasi.
  • Variable annuities - Tidak seperti anuiti tetap, ini tidak diregulasikan oleh SEC. Mereka membenarkan anda untuk melabur dalam portion pasaran wang.

Mencari Nilai Anuiti dengan sebuah Kalkulator Kewangan

sunting

Texas Instruments BA II Plus Professional[4]


Untuk mengira nilai kini pada anuiti biasa, dengan bayaran tahunan $2000 untuk 10 tahun dan kadar bunga 5%

Untuk Tekan Tunjuk
Tetapkan kesemua variasi ke defaults [2nd] [RESET] [ENTER] RST 0.00
Masukkan bilangan bayaran 10 [N] N= 10.00<
Enter interest rate per payment period 5 [I/Y] I/Y= 5.00<
Masukkan bayaran 2000 [PMT] PMT= 2,000.00<
Kira nilai kini [CPT] [PV] PV= 15443.47

nota: Tekan [CPT] [FV] dalam langkah terakhir daripada [CPT] [PV] untuk mengirakan nilai masa hadapan

Untuk mengirakan nilai kini suatu anuiti untuk dibayara, dengan bayaran tahunan $2000 untuk 10 tahun dan suatu kadar bunga 5%

Untuk Tekan Tunjuk
Tetapkan kesemua variasa pada defaults [2nd] [RESET] [ENTER] RST 0.00
Masukkan bilangan bayaran 10 [N] N= 10.00<
Enter interest rate per payment period 5 [I/Y] I/Y= 5.00<
Masukkan bayaran 2000 [PMT] PMT= 2,000.00<
Tetapkan bayaran jangka mula [2nd] [BGN] [2nd] [SET] BGN
Pulang ke moda kalkulator [2nd] [QUIT] 0.00
Komputasikan nilai kini [CPT] [PV] PV= 16215.64

nota: Tekan [CPT] [FV] di langkah terdahulunya daripada [CPT] [PV] untuk mengirakan nilai masa hadapan(1)

Rujukan

sunting
  1. ^ Kellison, Stephen G. (1970). The Theory of Interest. Homewood, Illinois: Richard D. Irwin, Inc. p. 45
  2. ^ Finite Mathematics, Eighth Edition, by Margaret L. Lial, Raymond N. Greenwell, and Nathan P. Ritchey. Published by Addison Wesley. ISBN 032122826X
  3. ^ ibid.
  4. ^ "Texas Instruments BA II Plus Guide Book", Texas Instruments

Lihat pula

sunting

Pautan luar

sunting